
REPORT DOCUMENTATION PAGE 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewin' 
the data needed, and completing and reviewing this collection of information. Send comments regarding th'is bürden estimate or an 
reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson DE 
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503 

oo- 

1. AGENCY USE ONLY (Leave 
blank) 

2. REPORT DATE 
28  Jan  2000 

4. TITLE AND SUBTITLE 
Nanotribology Investigations of Solid and Liquid Lubricants 
Using Scanning Probe Microscopies 

3. REPORT TYPE AND DATES Uu„  
Final Report 1 Nov 1996 - 31 Oct ±y_ 

6. AUTHOR(S) 
Charles M. Lieber, Ph.D. 
Professor of Chemistry- 
Harvard University 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

President and Fellows of Harvard College 
Department of Chemistry and Chemical 
Biology, Harvard University 
12 Oxford St. 
Cambridge MA 02138  
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

AFOSR /NL 
110 Duncan Avenue Room Bl 15 
Boiling AFB DC 20332-8080 

11. SUPPLEMENTARY NOTES 

5. FUNDING NUMBERS 
AFOSR Grant   #F49620-97-l-0005 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

10. SPONSORING / MONITORING 
AGENCY REPORT NUMBER 

12a. DISTRIBUTION / AVAILABILITY STATEMENT 
DISTRIBUTION STATEMENT A 

Approved for Public Release 
Distribution Unlimited 

13. ABSTRACT (Maximum 200 Words) 

12b. DISTRIBUTION CODE 

To understand and control friction and wear in both macroscopic and microscopic technologies requires a detailed understanding of 
material properties, chemical reactivity and intermolecular interactions on the nanometer length scale. The role of nanoscale defects on 
friction has been elucidated through scanning tunneling microscopy and atomic force microscopy studies of molybdenum disulfide. 
These investigations have shown that friction increases systematically with increasing defect density, and have demonstrated a novel 
load-independent friction regime due to sliding on constant area nanocrystals. The mechanical properties of finite size materials, which 
are important to micro and nanomechanical systems, have also been probed through studies of the bending of different thickness 
molybdenum oxide nanocrystals. Significantly, this work has shown that there is a substantial and systematic decrease in the modulus 
with decreasing thickness. This large drop in stiffness shows that materials will exhibit greater flexibility as their dimensions are 
reduced. Lastly, a new generation of molecular resolution tools has been developed. Carbon nanotubes were attached to conventional 
force microscopy tips and shown to provide large improvements in image resolution. Methods to localize molecules at the nanotube 
ends were also developed, and these modified probes were used to measure intermolecular forces and image with chemical sensitivity. 

14. SUBJECT TERMS 
tribology, atomic force microscopy; scanning tunneling microscopy; 
carbon nanotubes; nanomechanics; nanotribology 

17. SECURITY CLASSIFICATION 
OF REPORT 

NSN 7540-01-280-5500 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

15. NUMBER OF PAGES 

16. PRICE CODE 

20. LIMITATION OF ABSTRACT 

(LööO&*4 brf 
Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. Z39-18 
298-102 



AIR FORCE OFFICE OF SCIENTIFIC RESEARCH 

FINAL REPORT 

1 NOVEMBER 1996 - 31 OCTOBER 1999 

GRANT NUMBER: F4960-97-1-0005 

TITLE: Nanotribology Investigations of Solid and Liquid 
Lubricants Using Scanned Probe Microscopies 

PRINCIPAL INVESTIGATOR: Charles M. Lieber 

Abstract. 

To understand and control friction and wear in both macroscopic and microscopic 
technologies requires a detailed understanding of material properties, chemical reactivity and 
intermolecular interactions on the nanometer length scale. The role of nanoscale defects on 
friction has been elucidated through scanning tunneling microscopy and atomic force microscopy 
studies of molybdenum disulfide. These investigations have shown that friction increases 
systematically with increasing defect density, and have demonstrated a novel load-independent 
friction regime due to sliding on constant area nanocrystals. The mechanical properties of finite 
size materials, which are important to micro and nanomechanical systems, have also been probed 
through studies of the bending of different thickness molybdenum oxide nanocrystals. 
Significantly, this work has shown that there is a substantial and systematic decrease in the 
modulus with decreasing thickness. This large drop in stiffness shows that materials will exhibit 
greater flexibility as their dimensions are reduced. Lastly, a new generation of molecular 
resolution tools has been developed. Carbon nanotubes were attached to conventional force 
microscopy tips and shown to provide large improvements in image resolution. Methods to 
localize molecules at the nanotube ends were also developed, and these modified probes were 
used to measure intermolecular forces and image with chemical sensitivity. 
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I. Introduction. 
To understand and control friction and wear in both macroscopic and microscopic 

technologies requires a detailed understanding of material properties, chemical reactivity and 
intermolecular interactions on the nanometer length scale. This report describes the results of 
studies carried out over the past three years that have addressed these critical issues. In particular, 
three main areas have been at the focus of this project; these are: (1) nanometer scale studies of 
defects and friction using atomic force and scanning tunneling microscopies; (2) nanometer scale 
studies of the mechanical properties of finite size materials using atomic force microscopy; and 
(3) development of molecular resolution and chemically sensitive scanning probe microscopy 
tips. The investigations and resulting data from these three areas are described in sequence 
below. 

II. Nanotribology: Controlled Studies of Defects & Friction. 
Macroscopic studies of friction, lubrication and wear have contributed much to the 

phenomenological understanding of tribology. Studies of the interactions between macroscopic 
bodies are influenced by complex factors that can be disentangled through nanometer 
measurements of friction and intermolecular forces. Such microscopic information is also of 
importance to many areas of nanoscale science and technology, including the manipulation and 
assembly of nanostructures and microelectromechanical systems (MEMS). 

To address how defects on surfaces influence friction, we have systematically created, 
characterized and studied defects on M0S2 single crystal surfaces in ultrahigh vacuum (UHV) 
using STM and AFM instrumentation set-up under the prior AFOSR award. The defects were 
created on M0S2 surfaces by thermal oxidation, and are thus also relevant to the degradation of 
this model lubricant system. 

UHV STM studies of freshly cleaved and thermally oxidized M0S2 single crystal surfaces 
(Fig. 1) have been used to characterize several distinct types of defects. Circular, 4-5 nm features, 
which appear dark at both positive and negative bias, are observed on freshly cleaved M0S2 
(no.l, Fig. la) and oxidized M0S2. Previous studies have shown that these defects can be 
associated with metal impurities in the crystal (Ti and V), and indeed, we find that the defect 
density agrees well with the measured impurity concentration. Thermal oxidation produces 

Figure    1.        Ultrahigh   vacuum    STM 
characterization   of defects   on   oxidized 
M0S2     single     crystals.     The     images 
correspond to (a) freshly cleaved M0S2, (b) 
M0S2 oxidized for five minutes at 470 °C 
and (c) M0S2 oxidized for seven minutes at 
470   °C.   The   bright   features   in   (c) 
correspond to 2-4 nm M0O3 nanocrystals. 
(d)  Atomic-resolution  view  of the  one 
nanocrystal from sample shown in (c). The 
images are 20nm x 20nm (a-c) and 8 nm x 8 
nm(d). 
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two new types of defects: atomic-scale surface pits (no.2, Fig. lb) and larger raised structures 2-4 
nm in diameter (no.3, Fig. lc). The densities of these defects were found to increase with 
increasing oxidation time. Significantly, the 2-4 nm structures can be moved by the STM tip. 



Based on our previous studies of M0O3 nanocrystal manipulation and XPS studies, which show 
the presence of M0O3 on surfaces oxidized for seven minutes, we can attribute the 2-4 nm 
structures to very small M0O3 nanocrystals. 

To investigate how these defects affect friction, we have used UHV AFM to characterize the 
same samples studied by STM without removal from the vacuum system (Fig. 2). In general, we 
find that the lateral friction force increases linearly with load for the freshly cleaved M0S2 and 
M0S2 sample oxidized for 5-minutes. Moreover, the friction on this oxidized sample is 2-3 times 
larger than the clean surface for the same loads. Based on the STM results, we can conclude that 
the friction force— dissipation— increases in the presence of the small pits that nucleate the 
growth of M0O3. It is likely that the enhanced dissipation arises from the greater tip-sample 
interaction at these nucleation sites due to dangling bonds, etc. It is not possible using currently 
available Si3N4 or Si probes to investigate this in greater detail at the single defect level. 

Figure 2. Ultrahigh vacuum AFM 
measurements of friction vs load on 
oxidized M0S2 single crystals, (a) 
Friction vs load obtained with Si3N4 
tips on freshly cleaved M0S2 
(squares/blue line), M0S2 oxidized for 
five minutes at 470 °C (circles/red 
line) and M0S2 oxidized for seven 
minutes at 470 °C (triangles/green 
line). The latter friction data is 
independent of load, (b) Data recorded 
on M0S2 oxidized for 7 minutes, (red) 
Initial results obtained with a clean tip 
starting at low load and increasing, 
(green) curves obtained at different 
sample locations and with different 
cantilever/tip assemblies. 
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For oxidation times greater than five minutes, we observe the presence of very small 2-4 nm 
M0O3 nanocrystals (Fig. lc). Qualitatively, one would expect these larger defects to further 
increase dissipation and friction in the sliding contacts. This is indeed true for loads less than ca. 
10 nN. However, we also find totally unexpected behavior on these samples; that is, the friction 
is independent of load. Hence, at higher loads the total friction on the seven minute oxidized 
sample becomes less than that on samples containing fewer defects. We find that the load- 
independent friction observed on these samples is very reproducible and robust (e.g., Fig. 2b): we 
observe similar behavior and friction forces for Si3N4, Au-coated Si3N4, Ti-coated Si3N4, and Si 
tips. When using a tip for the first time, however, we often observe an initial linear increase in 
friction at lower loads followed by a sudden drop to load-independent friction (Fig. 2b). 

We have been able to explain consistently these novel results with a model where the tip- 
surface contact is mediated by a M0O3 nanocrystal. When the probe tip is scanned on the 
oxidized M0S2 surface, a M0O3 nanocrystal can adhere to the tip apex. This produces a space 
between the tip and substrate whereby the contact interface is an atomically-defined area that 
does not change with increasing load. It is this fixed area contact that gives rise to the new load- 



independent behavior. We believe that these results suggest an interesting approach to the design 
of improved lubricants that exploits nano load-bearing particles. This approach could be 
especially attractive for making well-defined and robust contacts in MEMS and other 
nanometer/micron-scale mechanical devices. 

III. Mechanical Properties of Nanoscale Materials. 
The mechanical properties of nanometer scale structures are of considerable interest to both 

fundamental science and technology. The mechanical properties of finite size materials might 
change significantly relative to bulk values due, for example, to the increasing ratio of under- 
coordinated surface to bulk atoms as structures are made smaller and smaller. However, such 
size-dependent effects have been difficult to characterize experimentally. This nanometer size 
regime is also theoretically challenging, because it falls between those treated conventionally 
using atomistic and continuum models. Moreover, a fundamental understanding of mechanical 
properties at the nanoscale is essential to applications ranging from micro- and nanoscale 
mechanical systems to nanostructured composites. 

We have exploited AFM to address this fundamentally and technologically important issue 
through studies of the bending of different thickness M0O3 nanocrystal plates. We chose the 
M0O3/M0S2 system, which had been developed previously in our laboratory through AFOSR- 
funded studies, since (1) M0O3 nanoplates of varying thickness can be rationally grown by 
thermal oxidation of M0S2, (2) the resulting M0O3 structures can be manipulated with an AFM 
over step edges to create freely suspended ends, and (3) the force vs deflection of these 
suspended nanoplate ends can be conveniently measured with the AFM to assess the modulus for 
a give thickness. A schematic illustrating our new experimental concept and an experimentally 
observed M0O3 nanocrystal overhanging a large step on the M0S2 surface are shown in Figure 3. 

I Mo03-Nan opiate 
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Figure 3. (A) Schematic of the experimental approach used to probe the mechanical 
properties of the M0O3 nanoplates. The geometry is characterized by imaging at low loads 
(without plate deflection). (B) Typical AFM image of M0O3 nanocrystals on a M0S2 
substrate near a step. 

After creating suspended nanoplate structures like Figure 3b, we measured the normal force vs 
displacement on a grid of points encompassing both the overhanging portion of the M0O3 
nanoplate and the portion suspended by the M0S2 substrate. For each point on the force- 
displacement matrix we calculate the slope; this slope is related to the Young's modulus E by a 



geometrical factor. Qualitatively, we found that the slopes were constant over the M0S2 region 
and decreased as the distance from the step edge increases (on the suspended portion). These 
observations agree qualitatively with expectations. 

To calculate quantitatively E, we took into account the exact geometry of the each M0O3 
nanoplate by using Finite Element Analysis. A summary of our results from this type of analysis 
carried out on crystals of varying thickness is shown in Figure 4. Significantly, we have 

Figure 4. Plot of the 
Young's modulus, E, 
versus nanocrystal 
thickness. The unit cell 
thickness of M0O3 is ca. 
1.5 nm, and thus these 
measurements span 
crystals with thicknesses 
from 3-10 unit cells. 

found that there is a substantial and systematic decrease in the Young's modulus with decreasing 
nanocrystal thickness. This large drop in E has important implications for potential applications: 
specifically, it shows that materials will exhibit much greater flexibility as their dimensions are 
reduced. We have demonstrated this latter point in studies of 1 and 2 unit cell thick crystals that 
move conformally over steps and other surface perturbations. 

IV. Carbon Nanotube Probe Microscopy Tips. 
We have also initiated and made substantial progress on a new area— the development of 

carbon nanotube AFM tips. These tips represents ideal probes for investigating phenomena at 
nanometer scale, and offer the opportunity for revolutionizing many areas of science and 
technology. 

Fabrication and imaging with carbon nanotube tips. The preparation and characterization 
of carbon nanotube tips is now well-established in the P.I.'s laboratory. SWNT and MWNT 
bundles are attached to the pyramids of gold-coated Si cantilevers using an acrylic adhesive 
under the direct view (500-1000 x; dark field illumination) of an optical microscope using 3-axis 
micromanipulators (Fig. 5). This bundle structure has several important implications. 
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Figure 5. (left) Field-emission scanning electron microscopy image of an unshortened (as 
prepared) SWNT tip attached to a gold-coated silicon pyramid of a FESP tip. The scale bar 
is 10 pm, and the SWNT bundle tip is ca. 8 urn in length, (right) Image of a MWNT tip 
after the standard shortening process. The scale bar is 1 urn and the tip is ca. 1.5 urn. The 
inset shows a magnified view of the tip end. Bundles >1 urn in length scatter sufficient 
light to be easily observed during mounting in an optical microscope using dark field 
illumination, even though the bundle diameters are significantly less than the wavelength 
of light. 

First, the bundle structure is important for creating a tip that is sufficiently rigid so that 
thermally-excited vibrations do not degrade the image resolution when the length is on the order 
of a micron or less. A less positive attribute is that the overall length and diameter of mounted 
bundles require that they be shortened and sharpened for high-resolution imaging. 

We have investigated the lateral resolution of MWNT and SWNT bundle tips by imaging 
inorganic (Au nanoclusters) and biological (e.g., DNA) standards. The tip radii are determined 
quantitatively from observed image widths and known sizes of the standards. These initial data, 
which are summarized in Table 1, show the great promise of nanotubes and especially SWNTs as 
ultrahigh resolution AFM tips. For example, in several cases we have been able to observe radii 
of ca 3 nm for tips prepared from SWNT bundles, and these radii are significantly better than the 
•10 nm we generally observe with Si or Si3N4 tips. However, it is also important to note these best 
values cannot be obtained reproducibly: the typical radii for MWNT and SWNT bundle tips are 
8-12 and 5-10 nm, respectively. Moreover, even the best values observed are far larger than the 
0.5 nm possible with a single SWNT tip. 



TABLE 1. Comparison of the resolution of Si, MWNT, and SWNT tips. 

Sample Tip Apparent Full Width 
at Half-Max. (in nm) 

Calculated tip radius of 
curvature (in nm) 

type-1 amyloid fibril Etched Si FESP 21.5 ±1.8 12.9 

MWNT 18.6 ±2.2 9.3 

SWNT 11.9 ±0.7 2.6 

5 nm diameter Au 
colloid 

Etched Si FESP 17.2 ± 2.0 11.5 

MWNT 13.0 ±2.1 6.0 

SWNT 10.6 ± 2.6 3.4 

lambda DNA Etched Si FESP 15 ±3 13 

SWNT 5±1 3 

Direct Growth of Nanotube Tips. The attached bundle tips described above do have 
limitations, including (i) the mounting procedure inherently selects against smaller and 
potentially sharper bundles since these are more difficult to observe while mounting and (ii) a 
relatively long time is required to attach bundles. To overcome these limitations we have 
investigated the direct growth of individual carbon nanotubes from the ends of Si tips by 
chemical vapor deposition (CVD), since this method could produce tips that would not need 
sharpening (they already are single tubes), and moreover, this approach could be carried out on a 
larger scale to make the tips widely accessible. 

A schematic of the approach used for the direct CVD growth of nanotubes is illustrated in 
Figure 6. A conventional Si tip, which has been flattened at its apex, is anisotropically etched to 

Figure 6. Growth of oriented 
carbon nanotube tips. The end 
of the tip of a conventional 
silicon cantilever is 
anisotropically-etched of ion- 
milled to create nanoscale 
pores perpendicular to the 
plane of the cantilever beam. 
Catalyst is deposited into the 
pore bottoms, and then 
oriented nanotubes are grown 
by CVD. 
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create nanopores along the tip axis. Alternatively, focused ion milling could be used to create 
nanopores at well-defined locations on the tip-apex. An oriented pore structure has been chosen 
for the catalyst support in order to control the growth direction and enable the reproducible 
production of nanotube tips for imaging. Previous studies of bulk nanotube growth have 
demonstrated that nanotubes produced by CVD grow aligned with the pore direction when using 
mesoporous structures for the catalyst support. After the pore structure is formed, catalyst is 
deposited into the pores, and then nanotubes are grown from the catalyst particles by CVD using 
a hydrocarbon gas. 

Significantly, our preliminary studies show that well-defined CVD nanotube tips can be 
reproducibly formed after several minutes of CVD growth at 750 °C using ethylene (Fig. 7). A 
high-resolution FE-SEM image shows a well-defined 480 nm long tube protruding from the Si 

Figure 7. Characterization of CVD nanotubes tips, (left) FE-SEM image of a CVD nanotube 
tip that has been shortened for imaging, (right) TEM image of a CVD nanotube tip. The entire 
AFM cantilever/tip assembly with nanotube tip was mounted on a custom TEM holder for 
imaging. The scale bar is 100 nm. 

tip apex. A second 100 nm nanotube is also observed but is sufficiently short that it does not 
interfere with the primary tip. Higher resolution FE-SEM images of a number of nanotube tips 
produced under these conditions show that the average diameter is 10 ± 5 nm. TEM images (Fig. 
7) show that the tips grown under these conditions are MWNTs with well-ordered graphene 
planes. In addition, AFM measurements of the cantilever oscillation amplitude vs position above 
a substrate surface have been used to characterize the mechanical properties of the CVD 
nanotube tips. These experiments show the characteristic elastic buckling of the nanotube 
structure. 

We have characterized the imaging performance of the CVD nanotube probes using 
colloidal gold nanoparticle standards, which are a relatively incompressible materials with well- 
defined diameters. Our preliminary data are summarized in Table-2. In general, the results show 
that we obtain very high-resolution tips with end radii between 3 nm and 6 nm. 



Table 2. Summary of CVD nanotube tip resolution data. 

Tip No. 01C 20E 38A 31G 38B 

radius ± la (nm) 3.7 ± 0.7 4.4 ± 0.5 5.7 ±1.7 3.2 ± 0.7 5.3 ±0.7 

3.5 ± 0.7 

The tips are defined by a specific number and a capital letter. The number designates a particular 
tip and the letter the growth cycle, where A=l. The resolution was calculated using a two-sphere 
model using the full-width at half-maximum determined from the experimental images. *The 
upper and lower values correspond to results obtained from 5 and 2 nm gold nanoparticles, 
respectively. 

These results represent a significant improvement over the best MWNT bundle tips that we have 
prepared in the past and commercial Si tips, although are still larger than the limit of a single 
SWNT. We have also found that the Si cantilever/tip assemblies can be reused several times to 
grow new nanotube tips. When a tip ultimately fails, all carbon is removed by oxidation (500 
°C), and then a new tip is grown by CVD. For example, tip 31G (the letter designates the number 
of growth/oxidation cycles with A=l) exhibits excellent resolution after 6 repeat growths, and the 
38A and 38B tips produced in sequential runs are comparable. 

Chemical functionalization of carbon nanotube probe tips. We have also made 
significant progress in our studies exploring the functionalization of carbon nanotube tips for the 
purpose of chemically sensitive imaging. Open-ended nanotube tips are formed while shortening 
the tubes in an oxidizing environment prior to use. We have characterized these open ends in 
MWNT and SWNT using transmission electron microscopy (TEM) as shown in Figure 8. 
Carboxyl groups are expected at open ends on the basis of previous spectroscopic studies of 
oxidized bulk nanotube and graphite samples. 

Figure 8. TEM image 
showing the open end 
of a shortened MWNT 
tip. 

100 nm 

To demonstrate the presence of carboxyl groups at the tip ends, we have measured the 
adhesion force vs pH between tips and a planar substrates modified with self-assembled 
monolayers (SAMs) terminating in hydroxyl groups. This procedure enables us to effective titrate 
ionizable acidic and basic groups on the tip end (termed a force titration). Significantly, force 
titrations recorded between pH 2 and 9 with MWNT and SWNT tips on hydroxyl-terminated 



monolayers exhibit well-defined drops in the adhesion force at ca. pH 4.5 that are characteristic 
of the deprotonation of a carboxylic acid (Fig. 9). The observation of carboxyl groups at the 
nanotube tip ends provides a handle for chemically-sensitive imaging, and moreover, these 
carboxyl groups can be further elaborated to create nanotube probes that are sensitive to a wide 
range of functionality. 

Figure 9. Adhesion force as 4" NT-COOH 
a function of pH between a _ 
MWNT tip and a hydroxy- 
terminated      SAM      (11- 3- 

thioundecanol     on    gold- 1 
62- 

coated   mica).   Each   data \ 

point   corresponds   to   the \ 
mean of 50 - 100 adhesion jjj \ 
measurements, and the error 5 \ 
bars represent one standard 1- V 
deviation. -P\    r   NT-CO Cr 
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Specifically, our preliminary studies have shown that the carboxyl group can be 
derivatized by coupling with amines (Fig. 10). The success of this coupling chemistry was 

Figure 10. Schematic representation of the chemical functionalization of a carbon 
nanotube end with an amine, using EDC (l-Ethyl-3-(dimethylaminopropyl) 
carbodiimide). 

demonstrated by force titrations. Nanotube tips modified with benzylamine, which exposes 
nonionizable, hydrophobic functional groups at the tip end, yielded pH-independent interaction 
force on hydroxyl-terminated monolayers. This covalent modification thus eliminates the 
prominent pH-dependent behavior observed with the unfunctionalized tips. Moreover, force 
titrations with ethylenediamine modified tips exhibit no adhesion at low pH and finite adhesion 
above pH 7. These pH-dependent interactions are consistent with our expectations for an exposed 
basic amine functionality that is protonated and charged at low pH and neutral at high pH. 

10 



Reactive Gas Functionalization. A new and promising approach for the 
functionalization of the nanotube probes prepared in our studies involves direct modification in a 
reactive gas during sharpening and/or shortening procedures. The motivation for these studies are 
that a direct process could (i) prepare tips with different functionality more efficiently than at 
present and (ii) this process could be used to prepare modified tips in-situ for UHV studies. 

The idea underlying our proposed approach is outlined schematically in Figure 11. In the 
case of the carboxyl (-COOH) groups that we have shown to be present at the tips ends, the our 
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Figure 11. Schematic of carbon nanotube 
functionalization process, (a) Carbon 
nanotube (heavy, black vertical line) 
attached to a Si cantilever is oscillated near 
resonance above a sputtered Nb surface in 
the presence of gas, X2. (b) A potential 
applied between the oscillating 
cantilever/nanotube assembly and sputtered 
Nb substrate produces a discharge that 
activates surrounding gas molecules (X2

+, 
X2*). (c). Subsequent reaction at the 
nanotube tip produces a tip functionalized 
with 'X'. In these studies, X corresponds to 
0,H,orN. 

proposed mechanism is as follows. The potential applied between the oscillating 
cantilever/nanotube tip and metal (Nb) surface produces a momentary arc discharge. In this 
discharge, two things occur. First, carbon is removed from the nanotube end in a process 
believed to be assisted by high electric fields. This process creates reactive carbon sites at the 
tube end. Second, the discharge can activate, through field and electron impact ionization, the 
surrounding gas molecules. In the cases of H2, N2, and 02, ionized (e.g., H2 , N2 , and 02 , 
respectively), excited state and atomic species can be produced. We have proposed that it is 
activated oxygen that reacts at nanotube ends to form the observed carboxyl groups. 

11 



Significantly, our studies of nanotube functionalization in H2, N2, and H2/N2 mixtures 
demonstrate the promise of this new approach. Force titrations recorded on MWNT tips 
modified in N2 exhibit pH-dependent behavior with no measurable force at low pH and finite 
adhesion at pH> 8 (Fig. 12). This pH dependent behavior shows that MWNT tips modified in N2 

Figure 12. (a). Adhesion 
as a function of pH 
between a MWNT tip 
modified in nitrogen and 
an OH terminated SAM. 
Each data point 
corresponds to the mean 
of 50-100 adhesion 
measurements and the 
error bars represent one 
standard deviation. The 
schematics illustrate 
qualitatively the 
ionization state and 
interaction measured at 
low and high pH. 
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have basic functionality at their ends. In addition, force titrations carried out on tips modified in 
H2 show pH independent adhesion, and thus demonstrate that nonioziable/hydrophobic ends can 
also be created. 

Chemical mapping with modified nanotube probe tips. Our studies have also shown that 
the modified nanotube probes can be used for chemically sensitive imaging. Previously, we 
showed that it was possible to exploit specific functionalization of commercial probe tips with 
organic monolayers to discriminate chemically specific forces and thereby image heterogeneous 
organic layers with chemical sensitivity. Such functional group sensitive imaging, which is called 
chemical force microscopy (CFM), was initially carried out in contact mode by recording 
chemically specific differences in friction. More recently, we have shown chemical mapping also 
can be carried out in the intermittent contact or tapping mode. In the regime of light tapping, we 
have found that phase-lag between chemically distinct surface regions is directly related to the 
difference in intermolecular interactions (or adhesion): 

A<f>-°cAWst Q 

where AO0 is the change in phase lag, k is the spring constant, Q is the cantilever quality factor 
and AWst is the difference between the work of adhesion for the tip interacting with chemically- 
distinct sample regions. These new results now provide another flexible method for chemical 
mapping of surface that is especially attractive for nanotube tips. 

12 



Significantly, we have used functionalized nanotube probes to obtain high-resolution, 
chemically sensitive images of patterned monolayer and bilayer samples in tapping mode (Fig. 
13). Tapping mode images recorded with -COOH and benzyl terminated tips exhibit greater 
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Figure 12. Chemically sensitive imaging with functionalized nanotube tips, (a) Schematic of a 
patterned sample consisting of 10 urn squares of a methyl-terminated (hexadecanethiol) 
monolayer region surrounded by a carboxylic acid-terminated (16-mercaptohexadecanoic 
acid) monolayer background on gold. Tapping mode phase lag images of the patterned sample 
in ethanol recorded with (b) an unmodified nanotube tip (COOH terminated) and (c) a 
benzylamine functionalized nanotube tip (phenyl terminated). Darker regions indicate greater 
phase lag. 

phase lag on the -COOH and -CH3 sample regions, respectively, and these results are consistent 
with expected and measured intermolecular forces between the functionalized tips and monolayer 
patterned sample. In addition, analysis of results obtained with one SWNT bundle tip on a 
chemically-heterogeneous bilayer sample80 showed a chemical resolution of 3-4 nm. This 
resolution is ca. 5x better than with previous tips and represents a clear proof-of-concept for our 
proposed ultrahigh resolution mapping studies discussed below. 
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